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This paper reports the post-growth annealing effects of low-
temperature grown Mg-doped InGaN. By using MOVPE,
1mm-thick Mg-doped InxGa1–xN (x ~ 0.36) films are grown at
570 8C. In order to activate the Mg acceptors, grown samples
are treated by the conventional furnace annealing (FA) or the
rapid thermal annealing (RTA). In the case of the FA at 650 8C

for 20min, the InGaN film is phase-separated. On the other
hand, the RTA at a temperature higher than 700 8C enables us
to get p-type samples. By using the RTA at 850 for 20 s, p-type
samples with a hole concentration 1018–1019 cm� 3 are
successfully obtained without phase separation.
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1 Introduction Direct-band-gap InGaN alloys have
proven to be important materials because of their unique
property of wide spectral tunability, which can be adjusted
continuously from the ultraviolet to infrared region. This
tunability offers many possibilities in a variety of device
applications, especially, in full-spectrum multi-junction
tandem solar cells [1, 2]. Achieving highly conductive p-
type InGaN is one of the key issues in bulk InGaN solar cell
technologies. As an acceptor impurity for GaN and related
alloys, Mg has been widely used. Nakamura et al. [3]
reported that Mg-dopedMOVPEGaN should be annealed in
hydrogen-free atmosphere at a temperature higher than
700 8C in order to remove H atoms from Mg atoms (Mg
activation) and then, to achieve a low resistive p-type GaN.
A similar annealing is necessary to get a low resistive p-
InGaN. In almost all cases, temperatures of Mg activation
(Tact) for InGaN are lower than those for their growth
(Tg) [4–9]. However, it has been still unclear that the
preparation of p-InGaN with intermediate In compositions
needs Tact same as that for p-GaN preparation.

Recently, we have found that InxGa1� xN (x¼ 0.2–0.4)
films show phase separation when their thickness exceeds a
critical value [10]. Critical thickness for phase separation is
increased with decreasing growth temperature [11]. For

example, a 1mm-thick InGaN can be obtained at a growth
temperature 600 8C or less, whereas a film as thin as 0.3mm
shows phase separation when it is grown at 750 8C.
Therefore, we need to reduce growth temperature down to
600 8C or less in order to get a thick (~1mm) InGaN. In such
a case, a situation that Tact> Tg will arise. This means that
the Mg activation annealing has a possibility to bring about
phase separation in grown films.

In this paper, we report the annealing effects of low-
temperature grown Mg-doped InGaN. Mg-doped
In0.36Ga0.64N films are grown at 570 8C by MOVPE and
treated by the furnace annealing (FA) or the rapid thermal
annealing (RTA). It is found that, by using RTA at around
850 8C, low resistive p-type samples are successfully
obtained without phase separation, while the furnace
annealing at 650 8C brings about phase separation.

2 Experimental The growth of In0.36Ga0.63N films
was conducted using a MOVPE system. TEG, TMI, and
NH3 were used for Ga, In, and N sources, respectively.
Cp2Mg was used for Mg source. Growth temperature and
pressure were fixed at 570 8C and 150Torr, respectively. As
substrates, AlN/Si(111) and a-Al2O3(0001) were employed.
The latter was mainly used to prepare samples for electrical
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characterization. The growth rate of InGaN was about
0.7mmh. Mg concentration in grown films was measured to
be in the range of 1019–1020 cm� 3 by the secondary ion-
mass spectrometer (SIMS) analysis. Grown films were
annealed in N2 atmosphere by means of FA or RTA.
Electrical characterization was made by using Hall
measurements at room temperature. Thermo-voltaic meas-
urement was also employed to define conduction type of
Mg-doped samples. The structures of the films were
characterized by high resolution X-ray diffraction
(HRXRD), and field emission scanning electron microscopy
(FESEM). SIMS was also employed to measure impurity
contamination levels in grown films.

3 Results and discussion Films of In0.36Ga0.63N
have been obtained by employing TMI/(TMIþTEG) molar
ratio of 0.4 in the vapor. As reported previously [12], InN
content in MOVPE InGaN is constant and is nearly equal to
TMI/(TMIþTEG) molar ratio when growth temperature is
0700 8C. Figure 1 shows the X-ray diffraction 2u/v
patterns for InGaN layers before and after the FA at 650 8C
for 20min. See Ref. [10] for detailed designation for each
peak in Fig. 1. One can see that the annealed sample has new
two peaks, metallic In-Ga and GaN-rich InGaN, in addition
to the epitaxial InGaN. The emergence of these two new
peaks is a typical result of phase separation of MOVPE
InGaN. The metallic In-Ga is formed by the thermal
decomposition of the InN-rich InGaN. Figure 2 shows the
surface and cross-sectional FESEM views of InGaN layers
before and after the FA at 650 8C for 20min. Phase
separation of MOVPE InGaN is accompanied with the
formation of porous regions in the middle region of the film,
and of metal In-Ga droplets on the surface [10]. Such typical
features for phase separation are clearly seen in Fig. 2. On

the contrary, phase separation can be suppressed for the
RTA samples. As shown in Figs. 3 and 4, no additional
peaks in the X-ray diffraction profiles and no porous regions
in the cross-sectional view are found even for Tact¼ 850 8C.

Thus, it has been confirmed that the RTA even at 850 8C
does not bring about phase separation in thick (~1mm)
InGaN. Then, electrical properties of Mg-doped InGaN after
RTA are studied. All samples for this purpose were grown
on a-Al2O3(0001) substrates. This is due to the fact that Hall
measurement data for InGaN grown on AlN/p-Si substrates
are somewhat affected by the presence of the conductive Si
substrate, in spite of the presence of the AlN interlayer
(100 nm thick). It has been also confirmed that no difference
in the phase separation behavior of MOVPE InGaN is found
between AlN/p-Si and a-Al2O3(0001) substrates [11].
Figure 5 shows the annealing temperature Tact dependence

Figure 2 Surface and cross-sectional FESEM views of InGaN
layers before and after the FA at 650 8C for 20min.

Figure 1 X-ray diffraction 2u/v patterns for InGaN layers before
and after the FA at 650 8C for 20min.

Figure 3 X-ray diffraction 2u/v patterns for InGaN layers before
and after the RTA at 850 8C for 20 s.
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of carrier concentration CC and Hall mobility m for RTA
samples. In this figure, tact shows the duration for RTA. One
can see that CC is markedly increased for Tact> 700 8C, and
reached 1018–1019 cm� 3 at Tact¼ 850 8C. On the other hand,
m is markedly decreased for Tact> 700 8C, and reached 0.1–
0.01 cm2Vs at Tact¼ 850 8C. Two methods are employed to
judge conduction type of the annealed samples. One is Hall
measurement and the other is thermo-voltaic effect. For
samples with Tact< 700 8C, both methods are difficult to
define their conduction type, due to very high resistivity of
those samples. For samples with Tact> 700 8C, their
conduction are proved to be p-type by the thermo-voltaic
measurement. For samples with Tact¼ 850 8C, the Hall
measurement also defines the conduction to be p-type. As
can be seen in Fig. 5, the results for the relatively long
(300 s) time annealing are not so different from those for the
30 s annealing. Therefore, the annealing time 10–300 s
seems not to be so critical in the present case. Thus, p-type
In0.36Ga0.63N films with a hole concentration 1018–
1019 cm� 3 are successfully obtained without phase separa-
tion by the RTA at around 850 8C. This is an important
progress in realizing an InGaN/Si tandem solar cell. Chang
et al. [6] studied the Mg doping of 550 8C-grown InxGa1� xN

(x¼ 0.2–1). However, those samples still showed n-type
conduction after the activation annealing. The reason for
this was not clarified.

Compared with the electrical data previously reported
for InGaN grown at a temperature higher than 700 8C with a
similar InN content [8], Hall mobilities of 0.1–0.01 cm2Vs
obtained in the present study (Fig. 5) are lower by more than
one order of magnitude, although comparable hole
concentrations are obtained. A high carbon contamination
level of 1019–1020 cm� 3 (revealed by SIMS analysis) in the
present samples seems to contribute to such a low mobility.
It is reasonable to consider that defect density in the low-
temperature grown samples is higher than that for a higher-
temperature grown sample. Regarding the very low Hall
mobilities, investigations from the viewpoint of hopping
conduction or percolation path [13] may be also needed.

In order to realize an InGaN/Si tandem cell with a high
performance, it is essential to improve electrical properties
of low-temperature grown InGaN by improving their
crystalline quality. Optimization of Mg doping level is
also important to improve the crystalline quality of p-
InGaN.

4 Summary The post-growth annealing effects of
low-temperature grown Mg-doped InGaN has been studied.
By using MOVPE, 1mm-thick Mg-doped InxGa1� xN
(x ~ 0.36) films are grown at a low temperature (~570 8C).
In order to activate Mg acceptors, grown samples are treated
by the FA or the RTA. In the case of the FA at 650 8C for
20min, the InGaN film is phase-separated. On the other
hand, the RTA at a temperature higher than 700 8C enables
us to get p-type samples. By using the RTA at 850 for 20 s,
p-type samples with a hole concentration 1018–1019 cm� 3

are successfully obtained without phase separation. Hall
mobility of 0.1–0.01 cm2Vs obtained in the present study is
considerably low compared with that for InGaN grown at a
temperature higher than 700 8C with a similar InN content.
This may be due to the high carbon contamination and high
defect density. The improvement of crystalline quality of
low-temperature grown InGaN by reducing both carbon
contamination level and defect density will be needed to
fabricate an InGaN/Si tandem cell with a high performance.
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